Tag Archives: geothermal

Greenhouse side curtains

Greenhouse side curtains

We just finished installing our greenhouse side curtains on our geothermal heat sink project.  Typically a greenhouse will have sides that roll up to allow ventilation and excess heat to be removed.  Our Zimmerman High Tunnel kit is designed differently.

Our greenhouse side curtains are entirely different.  They attach along the sides near the bottom of the greenhouse.  When the sides are opened the curtain drops towards the ground from the hip board.

This picture below shows an open side curtain during the install process.  These is a side pocket on each end that prevents wind from blowing around the ends of the curtains.

greenhouse side curtain
this greenhouse side curtain is party open

How the side curtain operates

The operation of the side curtains to open and close is quite simple.  Through the use of a counter weight and winch one person and open and close the side curtain.  A length of cable runs from the winch on one end of the greenhouse, along the hip board, to a counter weight at the opposite of the greenhouse,

At the top of the top of the greenhouse side curtain is a hemmed pocket along the entire length.  Through that hem is length of pipe.  A small hole was made through the side curtain below the pipe approximately every 6 feet.  one end of a length of line is put through the hole and tied off around the pipe and curtain material.  the other end of the put through a pulley and then crimped onto the cable running between the winch and counter weight.

counter weight that lowers the greenhouse side curtain
When this counter weight is lowered the side curtain lowers
this winch operates the greenhouse side curtain
This winch lowers and raises the side curtain

As the cable is let out from the winch the curtain is lowered.  To raise the side curtain you simply operate the winch and bring in the cable.

Why a drop down greenhouse side curtain?

There are two reasons why I like the idea of a greenhouse side curtain like the one on the Zimmerman greenhouse kit.  By lowering the curtain towards the ground instead of from the ground up there are two advantages.

When the side curtain is open, the opening is at the top and not at the ground level as is typical for most greenhouses.  This allows the gardener to vent excess heat from closer to the peak of the greenhouse. This could be particularly advantageous for tall  plants that are grown vertically.

The second advantage is in helping to keep critters out of the greenhouse.  In the typical greenhouse when the side curtain rolls up from the bottom all nature of animals can easily get into the greenhouse.  Our side curtains are always secured at the bottom, making it more difficult for unwanted pests and animals to get inside.

Greenhouse build progress

Greenhouse build progress

It has been a while since we sharing an update on our greenhouse build progress. Not much was accomplished during the heat of the summer. Now that fall is here we have taken advantage of cool weather and got busy with this project. The structure is up, the end walls are built and all of the double wall plastic is up and secured. The blower motor that inflated the canopy is installed and operational.

Greenhouse build progress
Greenhouse build progress – preparing to install canopy

What’s left to do to the greenhouse

What do we have left to do with this greenhouse? The side curtains on our greenhouse need to be installed. This Zimmerman High Tunnel kit has curtains that secure at the bottom and drop down from the top to vent excess heat. After the side curtains are up and operational, the door needs to be built, covered with plastic and installed.

Once the door is on we need to bury an electrical line pulled through conduit. It will provide the power to the for the inflated fan and the fan that will blow air for the heat sink. Once the power is run to the greenhouse we will work on the grow boxes and making the heat sink operational.

Greenhouse build progress - canopy plastic
Greenhouse plastic installed on canopy of greenhouse

The grow boxes

We have all four of them built and pushed to one side of the greenhouse. They need to be placed, spaced out, leveled and secured in place with stakes. An application of preplant will applied to the soil inside the grow boxes. Then they need to be topped off with a mixture of sand and sawdust. After mixing in an application of weekly feed and preplant with the sand and sawdust the grow boxes will be ready.

The two grow boxes down the center of the greenhouse will have the a-frame structure built to allow vertical gardening. That can be built after the seedlings are in and in the warmth and comfort of an operational geothermal heat sink greenhouse.

What’s left for the heat sink

So far we don’t have any more greenhouse build progress to report on the heat sink portion of this project. But it’s on our list of things to accomplish. Once the greenhouse is buttoned up the heat sink is our next project. The pipes on the inlet side of the heat sink will be bundled together and cut at the same height above the ground. The fan that will move air through the heat sink will be mounted on top of the barrel that will be our manifold. That barrel will then be partially buried over heat sink pipes.

Watch the video update of our greenhouse build progress

This video is part 7 in our YouTube video series on our geothermal heat sink greenhouse build. If you haven’t already done so, please consider subscribing to our channel.

https://youtu.be/_KLYGDmFoMA

Greenhouse build progress

Greenhouse build progress

We have been working outside this week and thought we would provide an update on the greenhouse build progress.  This greenhouse is being built over our 95 ton heat sink and is part of our geothermal heat sink greenhouse project.  We are still a long ways off from having the the heat sink operational.  You can see what we have accomplished in this picture.

Greenhouse build progress
Greenhouse build progress – hip board installation

 

Arch supports installed

Near the peak of the arches you can see a horizontal support.  They are on all the arches except the two on the end,  These supports will provide rigidity for the arches under heavy winds and snow loads.  We don’t get lots of snow here in NW Missouri but we do generally see some every year.  If we received lots of snow it would have been necessary to go with a different style of arch to support a heavy snow load.  They’re held in place with a self tapping screw to keep them from moving.

Installing greenhouse hip boards

Both sides of our greenhouse will get a hip board and baseboard installed.  You can see the partially installed hip board on one side of our greenhouse in the picture above.

In this picture you can see how we are securing the hip board to our arches.  Notice the Tapcon screw installed through the top bracket.  One bracket at each arch will get a Tapcon to prevent the hip board from moving.  Each arch, with the exception of the two end arches, will have the hip board secured in this fashion.  The two end arches will have a 3/8 inch hole drilled through the board and arch.  A carriage bolt will be used to secure the hip board at each end.

We used a 3/8 impact adapter with a socket and our impact driver to insert the lag bolts.

Greenhouse build progress - installing hip board
Hip board installation on our Zimmerman high tunnel

What comes next

After both sets hip boards are up we will install the base boards.  Once those are on we will need to do a little back filling with dirt to help keep critters from getting inside.

After the base board work is complete the ends will need to be closed up and the door and door frames built.  We will be framing in both ends with treated lumber that was reclaimed from our in the garden greenhouse.  We are still sorting out the details of the end walls.

After the end walls are complete the grow boxes will be built and installed.  They will be filled with sawdust and sand, mixed at 75 percent sawdust.  We likely transplant seedlings into the grow boxes before pulling plastic.

The double layer of greenhouse plastic will be installed this fall once the temperature drops to around 60 degrees.

Geothermal heat sink greenhouse

Geothermal heat sink greenhouse build

We are excited to be starting the planning process on a geothermal heat sink greenhouse build.  We will build this geothermal heat sink greenhouse to allow us to grow our own food year round. It would be wonderful to be able to grow frost intolerant crops like tomatoes during the dead of our winters. Without question, we will be able to grow hardy and moderately hardy crops all year inside this greenhouse.

More details about our green house plans

For the heat sink we will use 48 inches of rock that will be placed under 24 inches of topsoil beneath the greenhouse.  We will use a 4 inch thick Styrofoam insulator 6 feet tall around the perimeter of the rock.   The foam board will prevent the heat held in the rocks from being drawn out into the cooler soil outside the foot print of the greenhouse.

During the day, the warm/hot air from the peak of the greenhouse will be drawn down through duct work and a fan and be pushed out near the bottom of the heat sink.  The 4 inch pipe that is used below the ground will be perforated to allow the air to escape.  The air will move up through the rock to a second set of pipes, transferring the heat from the air and into my thermal mass.  The air will enter the second set of perforated pipes and be pushed into the greenhouse.

During the night when the green house temperature drops below that of the thermal mass heat sink the system will work in the opposite manner.  Cool air from the green house will be pushed through the rock and pick up heat.  As the air returns to the greenhouse it will be warmer, keeping the greenhouse temperatures warm through the night.

The high tunnel kit we selected

For our high tunnel kit we selected a 20 x 44 foot kit from Zimmerman’s High Tunnels.  They use 14 gauge steel that is 2 3/8 inches in diameter.  It is a little larger diameter than most kits we found while searching for kits. Zimmerman’s is a few hours drive from our home and we will be able to pick it up to avoid freight charges.

The drainage pipe we are using

For this project we will be using 4 inch corrugated drain pipe, often referred to as drain tile.  All of the pipe that will be horizontal will be perforated to allow air to escape and enter the rock.  Anything installed vertically will not be perforated to ensure the air makes it to our heat sink.  This is what our 4 inch corrugated and perforated pipe will look like.  We will buy it in 250 foot rolls for around $98

Geothermal heat sink greenhouse build
This perforated drain tile will be used horizontally in our rock heat sink

There will be two layers of this pipe, ten each, the will run the length of the greenhouse.  Both will be buried within the rock 3 feet apart.  One group will be 6 inches from the bottom, the second 6 inches from the top.  The top and bottom layers will not be connected.

The pipe near the bottom of the rock heat sink will be connected to the fan that draws heat from top of the greenhouse.  We intend to use a 55 gallon plastic barrel as a manifold to bundle all 10 of the pipes together.  With the fan mounted on top of the barrel it will be able to push air through all 10 pipes.

The ten pipes 6 inches from the top of the heat sink are also perforated and will direct the air blown in from the bottom up and back out into the greenhouse.  All of the pipe laid horizontally will be perforated.

Airflow pattern through the heat sink

Air will flow down to the bottom of the 10 perforated pipes at the bottom of the heat sink. The air will be pushed through the perforations and up through the rock to the second set of horizontal perforated pipes.  The air enters through the perforations and is directed back up and into the greenhouse.

Where each pipe terminates inside of the rock heat sink we will place a cap designed for the the corrugated pipe.  When we connect the perforated and non-perforated pipes we will use a an external connector designed specifically for the corrugated pipe. All unions will be wrapped in a tape intended for drain tile and to be buried.

How we came to decide on our greenhouse dimensions

As with all our gardening here, we will be utilizing the Mittleider Gardening Method in our geothermal heat sink greenhouse build.  There will be 4 grow boxes inside this greenhouse that are 18 inches wide and 30 feet long.  We want plenty of room to move and work in our greenhouse in additional to being able to do all our seedling production in the same place.

We have settled for an overall length of 44 feet.  This will allow a 5 foot walkway at both ends of the grow boxes.  At the far end of the greenhouse we will do our seedling production.  We intend to build a 4 foot bench along one wall for seedling stuff and storage of gardening equipment.  Ultimately there will be batteries here and a charge controller for the solar panels we want to install.

For the width we are going with 20 feet.  It was tempting to go wider to add a 5th grow box, but that would have increased the final cost significantly.  The added cost for the greenhouse itself wouldn’t have been horrible.   But the additional gravel requirements combined with the other costs for excavation and materials would have  significant.  And I can grow a lot of food in just 4 thirty foot beds using the Mittleider gardening method.

Considering snow load and high winds

A twenty foot wide greenhouse is pretty strong and able to stand up well to wind and the weight of our Missouri snow.  We don’t get much snow here so this allows us to save a little money because we don’t need W-trusses.  If we were to go wider it would be smart to spend the extra money for W-trusses with our kit.  W-trusses for the kit we selected would have been another $500.

While the heat sink and geothermal combined makes sense, we haven’t yet seen it work.  We don’t yet know how it will truly work during our winters.  If it doesn’t work and allow us to grow year round a larger system will have been a waste of money.  We will start with a smaller system and see how it performs. If it works well and inexpensive to operate a larger unit that would allow us to sell to our local community might be a good business venture.

Removing trees before building

Before we start this project there will be several trees to remove.  Doing this will prevent shading on the greenhouse and the root system from taking over the ground under the greenhouse.  Removing trees close to the greenhouse will prevent a tree from falling on the greenhouse and damaging it.

There are about 5 trees that I want removed from the vicinity of the build site.  Two of the trees are west of the site and will cast shadow on the greenhouse if left in place.  One tree is massive, an old black locust, that could potentially drop limbs on our greenhouse.  The roots from this tree could also end up under the greenhouse.  We prefer to avoid the possibility of any of those problems and will remove the potential entirely.

There are a few additional trees that are to the north of this geothermal heat sink greenhouse site that I want removed.  They don’t pose any immediate threat to the greenhouse, but I’d like to remove them now and ensure no trees will ever fall on the completed greenhouse and damage it.  We will remove them now to avoid the possibility of tree fall damage entirely.

Goal to have the greenhouse off grid

After the greenhouse is completed and in operation we would like to start getting the greenhouse “off gird”.  We will monitor the energy usage and design a solar system that will meet our needs.  On the end of the greenhouse under the seedling tables we will build an enclosure for the charge controller and batteries.

Through rain collection off our nearby home into a cistern we will be able to water our greenhouse.  We have enough annual rainfall that we can easily collect enough water for our needs.  Ultimately we want to use an automated sprinkler system for a lawn to water the 4 grow boxes inside our greenhouse.

Goals for monitoring the geothermal heat sink greenhouse build

A secondary goal for this geothermal heat sink greenhouse, is the ability to wirelessly monitor the temperatures of the greenhouse,.  Additionally, outside the greenhouse and  the ground temperatures of the heat sink.  Ultimately allowing others to view current temps and historical data would be nice.

I’ve not yet researched the options of products that will allow this.  We do plan on placing a piece of PVC during the build that would allow a temperature probe to be dropped into the heat sink material.  The PVC will be relatively inexpensive, we may add two to allow temperatures to me monitored at the top and bottom of the heat sink rock.

Almost ready to start excavation

We have all the materials except the styrofoam for the heat sink on hand. As soon as we can schedule the delivery of the 125 yards of rock we can start the dirt work, weather permitting. Our goal is to have the heat sink portion completed by the end of February. The greenhouse portion we hope to have completed and ready for seedlings mid March.

We will be documenting this project with photos and video, be sure to check back for updates of our progress.

Geothermal Greenhouse in NW Missouri

A look inside a geothermal greenhouse

We know the owners of this geothermal greenhouse located in NW  Missouri and I get to go over and poke my head inside from time.  It seemed like a terrific idea and I was excited to even go watch it going up.

Yesterday we went by while we in the area to peek inside the geothermal greenhouse.  I was amazed with the progress of the plants inside.   These tomatoes, 5 different varieties if I remember correctly, were planted back in the first week of April.  They’re easily 3 times the size of my own tomatoes that are growing outdoors.

Tomatoes growing in a geothermal greenhouse in NW Missouri
Tomatoes growing in a geothermal greenhouse in NW Missouri
tomatoes grown vertically in a geothermal greenhouse
Tomatoes grown vertically using the Mittleider method in a geothermal greenhouse

About this greenhouse

This greenhouse is a Mittleider design as seen in the Mittleider Gardening Course book.